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It has been shown that the solution of kinetic equations can be transformed into diagonalization 
of a symmetrical matrix, in contrast with the solution known so far and requiring diagonaliza­
tion of a nonsymmetrical matrix. Simple formulas are given for the calculation of derivatives 
of the concentrations of individual components with respect to the parameters. All formulas 
are presented in a compact matrix form; their uniformity for a large number of cases recognized 
in the existing literature greatly facilitates writing computer programs for calculations of reac­
tion kinetics. 

In our studies of the reaction kinetics of conversion of the rotational isomers of 2-
-chlorobutane and 4-chloroheptane we met with the reaction scheme 

:p<~ 
o 32 0 

2 k
'3 

3 (1) 

The scheme can be generalized for n components in the form 

(2) 

In order to solve this scheme (cP - 3 and the references therein), we introduce 

then 

(3) 
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or briefly 

dC 

dt 
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Kc, (4) 

where C is the column vector of concentrations of the individual components at 
a time t, C == (c l , c2 , ••• , cn), and K is a matrix transposed to the matrix K == klj. 
The solution of the system of differential equations (3) may be written as 

n n 

Ci = L Ski
eAkt L rjkcf ' (5) 

k=1 j=1 

where c? is the concentration of the i-th component at the time 0, Ak is the k-th eigen­
value of the matrix K, (rlk' r 2k , ... , r nk) is its k-th right eigenvector, (SkI' Sk2' .•• , Skn) 

n 

is its k-th left eigenvector; the eigenvectors are normalized so that L Skirik = 1. 
The respective matrix notation is i = 1 . 

C = S exp (At) RCo , (6) 

where S, exp (At), R are matrices with the elements Ski' exp (Akt) <5kk ., r jk respectively 
and CO is the column vector of the initial concentrations of individual components 
in the reaction mixture. Eqs (5) and (6) may fail if the matrix K possesses degenerate 
eigenvalues because in this case the matrices Rand S need not be defined. It will be 
seen below, however, that for a reversible reaction scheme the matrices Rand S 
are defined always. 

The above solution, known from the literature, calls for diagonalization of the 
nonsymmetrical matrix K. It will be demonstrated in the further part of the paper, 
that owing to the second law of thermodynamics the diagonalization of the non­
symmetrical matrix K can be transformed into that of the symmetrical matrix. For 
the latter procedure, very fast and numerically very stable algorithms can be used, 
such as the Givens or Jacobi method4

• 

Application of the Second Law of Thermodynamics 
to the Reaction Scheme 

In a reversible reaction of two components i, j it holds for the equilibrium concentra­
tions c~, c~: 

It follows from the second law of thermodynamics, that c~/c~ remains unchanged, 
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even if side reactions to further components are permitted . From the identity (c~/cn : 
: (c~/c~) = c~M one obtains 

or 

(7) 

Eq. (7) holds for each triad of the components i, j, k. 
Some rate constants in the reaction scheme may be zero. We assume, however, 

that in the reaction scheme each component may be changed into any other, if not 
directly, then at least indirectly through one or several intermediates. Under such 
assumption, each component has a nonzero equilibrium concentration c~; we as-

s~me that :t c? = 1, and thus ± c~ = 1. The constants kij' kji are then either both 
1=1 1=1 

nonzero or both zero for any pair of the components i, j, i.e. each reaction proceeds 
either in both directions or in none. 

Let us now introduce a diagonal matrix r with the elements (jij.JC~ . The matrix 
A = rK r- 1 has the elements aij = kij .J(c~/cn. If kij =!= 0, c~M = kj;fkij , so that 

(8) 

if kij = 0, it also holds that aij = 0, so that Eq. (8) is also valid in this case. We see, 
consequently, that the matrix A is symmetrical. Its eigenvalues are identical with the 
eigenvalues of the matrix K. If the eigenvector of the matrix A corresponding to t1~;' 
eigenvalue Ak is designated by (Vlk' V2k, •.• , vnk), we obtain 

R = r- 1v, S = fir, (9) 

where V is the matrix Vik ' and thus 

(10) 

whence Ski = rikc~. This is a relationship between the right and left eigenvectors 
of the matrix K. Diagonalization of the symmetrical matrix A gives the eigenvalues 
Ak uf the matrix K and the matrix of the eigenvectors V. Hence, by using Eqs (9) 
and (10) , one obtains the matrices Rand S of the eigenvectors of the matrix K. 
The number of linearly independent eigenvectors corresponding to each degenerate 
eigenvalue of the matrix A, and thus also of K, is equal to the degeneracy of the 
eigenvalue. However, these eigenvectors of the matrix A must be orthogonalized. 
This is done automatically in the case of the Jacobi method, while the Givens method 
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requires an additional orthogonalization of the eigenvectors, which is necessary also 
in the case of very close eigenvalues. Thus, the matrices Rand S exist and Eqs (5) and 
(6) hold of course under the above assumption that all components have a nonzero 
equilibrium concentration. An opposite case, i.e. a case arising if some reactions are 
irreversible, will be dealt with in a forthcoming paper. 

The matrices A and K have their eigenvalue An = 0; the respective eigenvectors 
have the form Vin = .jc~, rin = 1, Sol = c~ . Hence it can be seen that in Eq. (5) 
the term of the sum for k = n equals c~. 

Calculation of the Derivatives of Concentrations of the Individual Components 
with Respect to the Parameters 

To adjust the parameters of kinetic equations, e.g. activation energies and frequency 
factors in the Arrhenius or Eyring equation, one must calculate the derivatives 
of concentrations with respect to these parameters. If a kinetic equation is integrated 
at varying temperature so that the time interval is divided into sufficiently small parts 
within which a constant temperature is assumed, the resulting concentrations from 
the preceding part are the initial concentrations of the subsequent part, so that 
generally it should be assumed that the initial concentrations are also functions of the 
parameters. If one puts 

(11) 

it holds 

e = Teo (12) 

and differentiation of Eq. (12) with respect to the parameter p gives 

(13) 

Calculation of the matrix oTlop requires the matrices oSlop, oAlop and oR/op. 
This is dealt with by the perturbation theory5; here, the results of this theory are 
derived in a simple way. 

Differentiation of the equations SR = E and A = SKR with respect to p gives 

(14) 

and 

oA = oS KR + SK oR + S oK R. 
op op op op 
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1150 Jake~ : 

We substitute K = RAS into the above equation and put (as/ap) R = M; hence, 
S aR/ap = - M, according to Eq. (14): 

aA = ~ RA + AS aR + S a K R , 
ap ap ap ap 

or 

~~ = MA - AM + S aK R. 
ap ap 

(I5) 

By comparing both sides of Eq. (15), we obtain (since the matrices A and aA/ap 
are diagonal) 

aAi = (s aK R) 
ap ap ii 

(16) 

and 

(17) 

The diagonal elements of the matrix M are not determined as a consequence of the 
fact that the right eigenvector may be multiplied by a constant, if at the same time 
the corresponding left vector is divided by the same constant. It will be seen below 
that these diagonal elements are not needed in the calculations of the matrix aT/aE.~ 

Now let us differentiate Eq. (11) with respect to p and substitute as/ap = MS, 
aR/ap = -RM: 

or 

aT = RUS, (18) 
ap 

where U = exp (At) M - M exp (At) + (aA/ap) t exp (At) is a matrix whose 
elements Uij are given by 

Uli = - te. (S aK R) Aft 

. ap Ii 
(19) 
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After substituting for mij we obtain 

(20) 

This reasoning holds if all eigenvalues of the matrix K are nondegenerate. For 
degenerated eigenvalues the off-diagonal elements mij corresponding to the degenerat­
ed eigenvalues Ai = AJ are undefined (this follows from Eq. (15)) as a consequence 
of the fact that the degenerated eigenvectors may be replaced by their linear combina­
tion. To fulfil Eq. (15), it must be assumed that the respective off-diagonal elements 
of the matrix (oAjop)ij are nonzero, 

(OA) _ (s oK R) 
op ij op ij 

(21) 

for the diagonalization of the matrix oAjop it is then necessary to transform degenerat­
ed coordinates, as is known from the perturbation theory 5. By using Eq. (21), one 
obtains for the respective element uij 

uij = - te, (s oK R) A,I 

op ij 

(22) 

Eqs (20) and (22) show that uij is a continuous function of the variables Ai, Aj in the 
surroundings of Ai = Aj. However, if IAit - A/I ~ 1, loss of accuracy takes place 
in Eq. (20) due to round-off errors. In this case the fraction in Eq . (20) must be 
rearranged to 

(23) 

while the fraction on the right-hand side of Eq. (23) must be calculated by the Taylor 
series expansion of the exponential function in the form 

1 + ! x + ! x 2 + ~ x 3 + ~ X4 + ... , 
2 6 24 120 

where x = (J'j - Ai) t. Such a rearrangement in Eq. (20) and postorthogonalization 
of the eigenvectors corresponding to the degenerated and very close eigenvalues (need 
not be carried out if the Jacobi method is used) guarantees complete numerical 
stability of the solution of kinetic equations and of the derived formulas for the deri-
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vatives of concentrations of the individual components with respect to the para­
meters. 

Differentiation of Concentrations with Respect to the Rate Constants 

Eq. (7) shows that the rate constants are not all of them independent. Independent 
parameters are best introduced by means of the equation 

(24) 

with the conditions Wij = Wji and Rl = 1 (or Rn = 1). Hence, the total number 
of independent parameters in the system is n(n - 1)/2 + n - 1 = (n + 2) (n - 1)/2. 
From (8K/8k lm)ij = c5Jc5jm - c5jl) we obtain 

(25) 

For further considerations, let us introduce Inklm as the parameter (in other words, 
we shall calculate kim 8ci/8k lm) and denote IXpq = (exp (Apt) - exp (Aqt))/(Ap - Aq) 
for Ap =l= Aq and IXpq = t exp (Apt) for Ap = Aq. Hence, 

and thus 

To calculate the right-hand side of this equation, let us first calculate gp = Iripc? and 
after that, Pql = I:SpllXpqgp' Hence, i 

(26) 

For Wlm(~ co) we obtain, eventually, 
8wlm j 

(27) 
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and further, 

n-l 

- L {3qlSqj L (r mq - r lq) kim · (28') 
q=1 

The last sum with respect to m is (KR)lq = (RA)lq = Aqrlq. This gives the resulting 
relation 

n-1 

- L Aqrlq{3qlSqj • 
q=1 

(28) 

Eqs (27) and (28) make possible a simple calculation of the derivatives of the con­
centrations of individual components of the reaction mixture with respect to inde­
pendent parameters, lnwlm and InRI. 

The Case of Three Components 

In this case it is possible to derive expressions for Ak' Ski and rik in a closed form 
without diagonalization of the matrix A. For simplicity's sake, let us write x = k21 -

- k31' Y = k32 - k lZ , Z = k13 - k 23 • Then, 

Al = -(k12 + k21 + k13 + k31 + kZ3 + k32 + ../D)/2, 
Az = -(k12 + kZl + k13 + k31 + kZ3 + k32 - ../D)/2, 

where D = (x - y)2 - 2(x + y) Z + Z2. (The expression D remains unchanged 
after permutation of the x, y, z). In the expression for A2, loss of accuracy occurs 
if AI' A2 differ by several orders of magnitude, e.g. if Al '" 108

, A2 '" 1. This happens, 
e.g., if one of the reversible reactions is faster by several orders of magnitude than 
the remaining two, e.g. k12 '" k21 '" 108

, k13 '" k31 '" k23 '" k32 ,...., .1. In this 
case, one must employ the formula 

A2 = (kdk 31 + k23 + k32) + k21(k13 + k31 + k32) + 
+ k13(k23 + k32) + k31 k23)/Al , 

which follows from a relation for the product of the roots of a quadratic equation. 
It also holds that 

S3i = c~ = Ri/(Rl + Rz + R3) , 

S~1 = 2x, S~2 = -x - y + z - ../D, S~3 = -x + y - z + ../D, 

S;1 = 2x, S;2 = -x- y + z + ../D, S;3 = -x + y - z - ../D 
Collection Czechosiov . . Chem. Commun. [Voi. 441 [19791 
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(prime in the above equations means that the eigenvectors are not normalized ac­
cording to the equation Ski = rikc~), For very small x, loss of accuracy occurs in these 
formulas; for x = 0, one of the vectors thus obtained is zero. In this case formulas 
must be used which are obtained by interchanging the subscripts 1 and 2, or 1 and 3: 

S~l = -x - y + z + JD, S~2 = 2y, S~3 = X - Y - z - JD, 

or 

S~l = -x + y - z - .JD, S~2 = X - Y - z + JD, S~3 = 2z . 

Expressions for S;I are obtained from those for S~I by changing the sign before the 
term JD. x, y, z satisfy the equation 

(29) 

If in the calculation of each of the values of x, y, z several significant orders of magni­
tude are lost in the subtraction, the validity of Eq. (29) may be violated. In this case, 
x, y, z must be changed so as to preserve the validity of Eq. (29); otherwise, the vali­
dity of SR = E would be violated. Such change in x, y, z lies within the limits of 
round-off errors. If x = y = z = 0, the eigenvectors S~i' S;i may be calculated 
using any arbitrary triad of x, y, z satisfying Eq. (29). Such cases arise if ,,1.1> A2 are 
very close or identical, and the above rearrangement is equivalent to the postortho­
gonalization of the eigenvectors at almost degenerated or degenerated eigenvalues. 
Finally, one obtains for r;k 

where Nk = s~i/c~ + s~~/c~ + s~~/c~. Unnormalized eigenvectors S~i and r;k thus 
obtained may be employed instead of the vectors Ski' rik in Eqs (5), (18), (19), (20), 
(27) and (28). Normalized eigenvectors are obtained from the equations Ski = 
= s~INkl/2, rik = skdcr. They must be used, e.g., in Eq. (27'). 

Exclusion of a Superfluous Coordinate 
n n 

With respect to L Ci = 1 (and thus, L c? = 1), one of the coordinates, e.g. Cn' 
1=1 i=l n-1 

may be excluded from the above equations, according to Cn = 1 - L Ci' At the 
i=l 

same time, in sums with respect to the eigenvalues of the matrix K it is advantageous 
to separate the term corresponding to An = O. We define 

n-1 

t;j = L spje1.pt(rip - rnp) = tij - toj' 
p=l 
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Then, 

( 
OCD) n-1 oe? 

T- = Lt;j--.!.' 
op j i=1 Op 

0-1 

(TCD)j'= eJ + L t;le? - en· 
i=l 

For gp and /3ql we obtain 

n-1 n-1 

gp = rnp + L (rip - rnp) e? = L (rip - rnp) (e~ - en + 0np, 
i=l i=l 

n-l 

/3ql = e~O(qn + L SplO(pqgp , 
p=1 

1155 

where O(pq have the same meaning as before, O(qn = (exp (Aqt) - l)/Aq. These quantities 
may then be used without change in Eqs (26), (27), (28). The equations thus rearranged 
do not contain the concentration of the n-th component and its derivatives with 
respect to the parameters, so that this component need not be calculated in course 
of integration of the kinetic equation. 

The Case where the Eigenvalues of the Matrix K Differ 
by Many Orders of Magnitude 

In this case the procedure just described does not provide sufficient accuracy. The 
error involved in the eigenvalues Ai obtained by the diagonalization of the matrix K 
is given by the product of the largest eigenvalue and the relative accuracy of the 
calculation. Consequently, with the required accuracy of results 10- 6 and the ac­
curacy of calculation 10- 14 (practically attainable in REAL 8 variables with IBM 
computers), our expressions are quite sufficient for a range of the eigenvalues up 
to 108

. The procedure which allows us to calculate the eigenvalues at any range of or­
ders of magnitude is presented below. 

The secular equation of our problem I K - AEI = 0 becomes 

IW - ADI = 0, 

where W == wij is a symmetrical and 0 == Rioij is a diagonal matrix from wij and Ri 

introduced by Eq. (24). The matrix of the eigenvectors of this secular problem is 
identical (but for the normalization) with the matrix R. In this form the secular equa­
tion is identical with the secular equation of vibrations of a set of n mass points 
having masses Ri and forces Wij between the i-th and j-th point. A way for removing 
the numerical instability of the problem consists in introducing the Jacobian co­
ordinates of the system of mass points, starting from the pair of points having the 
highest vibrational frequency. 
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To carry out the above transformation, one should first determine the highest 
value of kij + kji , i.e. will/Ri + 1/Rj). (It is also sufficient to find the maximum 
value of k ij , i.e. WU/Ri' but in this case the search ShbUld proceed over arranged 
pairs (i, j)). Now, the matrices Wand 0 are subjected to the transformation Q 
between the coordinates i and j in the form W' = QWQ and 0' = QOQ, where 
qii = RJ/(RiRlRi + Rj))l/Z, qji = -R;j(RiRlRi + Rj))t/z, qij = qjj = 1 while the other 
diagonal elements of the matrix Q are unity and the other off-diagonal ones are 
zero. Without loss of generality, one may assume that i = 1, j = 2, and introduce 
Ql = Rz/(RtRz(Rt + R2 ))1/Z, (h = Rt/(RIRz(Rt + Rz))l/Z. By using the relationship 
Wjj = - L wij , we obtain for the transformed quantities 

J*I 

n n 

W~t -(Ql + (12)Z W 12 - £1i L W li - £1~ L W2i , 
i=3 i=3 

n 

w;z = .- LW;i' 
i=3 

n 

w~z = - L W~i' 
i=3 

W;i = Wli + W Zi , j = 3,4, ... , n , 

R~ = 1, 

it holds that wJi = W;j; the other elements of the matrices Wand 0 remain unchanged 
after the transformation. 

n 

If before the transformation L wij ~ 0, after the transformation it holds that 
j=l 

L W;j = O. To facilitate the description, the transformed coordinate 1 will be called 
j=2 

"internal", while the transformed coordinate 2 and all untransformed coordinates 
will be referred to as "external". 

In order to introduce the Jacobian coordinates throughout the system, the trans­
formation just described must be repeated(n - 1) times. In the k-th step we look 
for the maximum of wil1/Ri + 1/Rj) only between (different) subscripts i and j, 
both of which correspond to the external coordinates. After the subscripts i and j 
have been moved into the first and second positions transformation is carried out 
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using the same formulas as in the first step. Only in the case that some value of WlI 

or W2i is given from the preceding steps in the form - LWji, where j passes through 
j 

the indices of all external coordinates with the exception of the one considered 
in this case, formulas 

or 

and 

W~i = ((11 + (12) W li + (12 LW j, , 
j 

are used, in which the summation with respect to j passes in all cases over all indices j 
corresponding to the external coordinates, with the exception of the indices 1 and 2. 
Such a case may arise only if i is an index corresponding to an internal coordinate; 
in this case, the element Wji is given by the above sum for just one index j (j cor­
responds to an external coordinate). Such an analytical subtraction of the W12, or of 
the Wli or W2i values from the sum guarantees numerical stability of the calculation 
at any range of orders of magnitude of the Ai values. 

After the k-th step there are k internal coordinates, while the other (n - k) co­
ordinates are external. For all indices i, whether they correspond to the internal 
or external coordinates, the summation rule LWij = 0 is valid, where the summation 

j 

index j passes only values corresponding to the external coordinates. After n - 1 
steps a single external coordinate remains, but owing to the summation rule the row 
and column in the matrix W corresponding to this coordinate contain only zeros. 

After completion of the transformation it is easy to see that the order of magnitude 
of each off-diagonal element of the transformed matrix is equal to or smaller than 
that of the smaller of the two respective diagonal elements. In further analysis analogy 
with vibrations of mass points is used, for which it is known that the Jacobian 
coordinates obtained by the above procedure are a good approximation to the normal 
coordinates, so that the diagonal elements of the transformed matrix are of the same 
order of magnitude as eigenvalues of the matrix K. Only for a chain of n resonating 
oscillators there is a more considerable decrease in the value of the eigenvalue com­
pared with the original diagonal element, in a ratio 1 : n2

• It may be expected, 
therefore, that the eigenvalues of the matrix K do not differ by more than two orders 
of magnitude from the diagonal elements of the transformed matrix. 

In the case of the Givens method the above estimate of the eigenvalue error cannot 
be improved. Therefore, this method is not applicable in our case. In the case of the 
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Jacobi method one can see that in the Jacobian transformation of a pair of co­
ordinates in which the diagonal elements differ by their orders of magnitude, the 
Jacobian rotation is only a small one, because the off-diagonal element is small 
compared to the difference between the diagonal elements. This means, that through­
out the diagonalization it also holds that the order of magnitude of each off-diagonal 
element is equal to or smaller than that of the smaller of the two respective diagonal 
elements, because in the transformations the large off-diagonal elements cannot 
contribute considerably to the small off-diagonal elements owing to the small angle 
of rotation. The Jacobi method can then be programmed so that in the transforma­
tion one obtains correction of each element (i.e. w;j - Wjj) with full accuracy. Then 
the accuracy of each eigenvalue is given by the maximum reached by the respective 
diagonal element of the matrix during the diagonalization, multiplied by the rela­
tive accuracy of calculation. For instance, the eigenvalue of 103 at an accuracy 
of 10- 14 and if the respective diagonal element has reached the maximum of 105 

is calculated with an error of 10- 9
, i.e. with a relative accuracy of 10- 12

• In the 
diagonalization it must be kept in mind that in the transformation by the method 
of differences the indices after transformation should be arranged so that the smaller 
diagonal element before the transformation corresponds to the smaller element 
after the transformation, and vice versa; otherwise, the accuracy would be lost and 
the method would lose its sense. 

Hence, it may be expected that the maximum assumed by the diagonal element 
during the diagonalization does not exceed the respective eigenvalue by more than 
two orders of magnitude. Since, however, no exact mathematical proof of such state­
ment was given, it should be recommended that the maxima of the diagonal ele­
ments during the diagonalization ought to be followed, and any violatio'n of thi~' 
statement ought to be indicated. 

Thus, the procedure just described allows us to obtain eigenvalues Aj with an almost 
complete relative accuracy. It can be easily seen that the eigenvectors of the trans­
formed matrix Ware obtained by means of this procedure with the same accuracy 
as the eigenvalues. To say it more exactly, a small element of an eigenvector (cor­
responding to a small eigenvalue), which corresponds to a coordinate with a large 
diagonal element and which is equal to or less than (by order of magnitude) the 
ratio of the eigenvalue and the diagonal element taken for consideration have been 
calculated with an error equal to the ra:tio of the maximum reached by the diagonal 
element corresponding to the eigenvalue in the diagonalization to the value of the 
diagonal element of the respective coordinate, multiplied by the relative accuracy 
of calculation. (E.g., in the eigenvector corresponding to the eigenvalue 103

, if the 
maximum of the respective diagonal element at diagonalization was 105

, the element 
of this vector corresponding to the coordinate with the diagonal element 109 at the 
accuracy 10- 14 is calculated with the maximum error of 10- 18, the value of this 
element being 10- 6 at most). 
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Finally, in the back transformation of the eigenvectors (in which the matrix R 
is obtained) one should bear in mind that the values r mq - rlq should be obtained 
with sufficient accuracy. If Aq is very small with respect to kim, then r mq - r lq is very 
small compared to r lq , and in the calculation of the latter some significant digits 
are lost by subtraction. Consequently, rmq - r lq cannot be calculated by mere 
subtraction but it should be calculated directly from the eigenvector of the trans­
formed matrix W. Here, only those transformed coordinates become operative 
which contain the difference Cm - CI' The diagonal elements corresponding to these 
coordinates are equal at least to kim (by order of magnitude), so that all components 
of the eigenvector corresponding to these coordinates are very small and have been 
calculated with sufficient accuracy. The Ski values can be calculated from Ski = rikCr 

The values of Aq , Sqj and r mq - r lq thus obtained can be used in Eqs (5), (26) 
and (28). However, in Eq. (27) significant digits may be lost by subtraction klm{3ql -

- kml{3qm; it must therefore be rewritten in the form 

(27') 

of course, rip - r mp is not calculated by subtraction, but similarly to r mq - r lq 

directly from the eigenvector of the transformed matrix W. By employing this proce­
dure, one obtains the concentrations of individual components and their deriva­
tives with respect to RI and wlm with sufficient accuracy even if the range of the 
eigenvalues Ap comprises many orders of magnitude. 
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